Y6- Number and Place Value

$10,000,000$

Y6- Addition, Subtraction, Multiplication and Division

long multiplication

using rounding to estimate

3.8×6

3.8 is roughly equal to 4 .
$4 \times 6=24$

$$
\begin{array}{ll}
5-3+(6 \times 2) \times 2^{2} \\
5-3+12 \times 2^{2} & \text { 1) Solve any brackets }(6 \times 2=12) \\
5-3+12 \times 4 & \begin{array}{l}
\text { 2) Solve any square/ cube/ roots }\left(2^{2}=4\right)
\end{array} \\
5-3+48 & \begin{array}{l}
\text { 3) Solve any division or multiplication in } \\
\text { order from left to right }(12 \times 4=48)
\end{array} \\
50 & \begin{array}{l}
\text { 4) Solve any addition or subtraction in } \\
\text { order from left to right }(5-3+48=50)
\end{array}
\end{array}
$$

Common factors of 12 and 30 are $\mathbf{1 , 2 , 3}$ and 6.
The highest common factor (HCF) is 6

12	30
$1) \times 12$	1×30
2	$\times 6$
$(3) \times 4$	$(2) \times 15$
	$(3 \times 10$
	5×6

Common multiples of 3 and 4 include 12 and 24. The lowest common multiple (LCM) is 12

Multiples of $3: 3,6,9,12,15,18,21$, 24 27 Multiples of 4: $4,8,12,16,20,24,28,32$

A prime number is a whole number greater than one that only has two factors- one and itself. It can't be divided by another positive integer without leaving a remainder. 2 is the only even prime number

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Y6- Fractions (including Decimal and Percentages)

multiplying pairs of fractions

$$
\begin{aligned}
& \frac{2}{3} \\
& \frac{2}{3} \times \frac{3}{5}=\frac{6}{15}
\end{aligned}
$$

expressing fractions in the

same denominator

$\sqrt{3}$

adding fractions with

 different denominatorsFirst express the fractions as the same denominator

$$
\frac{8}{12}+\frac{3}{12}=\frac{11}{12}
$$

subtracting fractions with different denominators

$$
\frac{8}{12}-\frac{3}{12}=\frac{5}{12}
$$

O	0	t	h
3	\bullet	5	7

multiplying by 10, 100 and 1000

M	HTh	Th	Th	H	T	O	t	h	th
					$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	
				1	2	4	5		
			1	2	4	5			
		1	2	4	5	0			

dividing by 10, 100 and 1000

M	HTh	Th	Th	H	T	O	t	h	th
				$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$			
					4	2	1		
						4	2	1	
						0	4	2	1

```
Y6- Fractions (including Decimal and Percentages)
```

$\frac{1}{4}$ of a piece of string is 12 cm . How long is the total piece?
find the whole from a fraction

12	12	12	12

$12 \times 4=48 \mathrm{~cm}$

associate a fraction with

 division$$
\frac{1}{8}=1 \div 8
$$

	0.	1	2	5
8	1,	0	0	0
	1	2	4	

12.4×8

1) $124 \times 8=992$
2) $12.4 \times 8=99.2$

		1	2	4
				8
	9	9	2	
	1	3		

Estimate the answer to make sure it's reasonable. E.g. $12 \times 8=96$, so the answer should be approximately 96

mixed numbers and improper fractions

mixed number
improper fraction

$\frac{1}{8}$	0.125	12.5%
$\frac{1}{4}$	0.25	25%
$\frac{3}{8}$	0.375	37.5%
$\frac{1}{2}$	0.5	50%
$\frac{5}{8}$	0.625	62.5%
$\frac{3}{4}$	0.75	75%
$\frac{7}{8}$	0.875	87.5%
$\frac{8}{8}$	1	100%

calculating percentages of a number
'per cent' means 'out of 100'.
50% means $\frac{50}{100}$ (50 out of 100)
Key percentages to remember

50%	divide the number by 2
25%	divide the number by 4
75%	divide the number by 4, then multiply the answer by 3
10%	divide the number by 10
1%	divide the number by 100
Multiples of 10%	

30%	Divide the number by 10, then multiply the answer by 3
40%	Divide the number by 10, then multiply the answer by 4
70%	Divide the number by 10, then multiply the answer by 7

Other percentages

32%	Divide the number by 100, then multiply the answer by 32
78%	Divide the number by 100, then multiply the answer by 78

enlarged by a scale factor of 4

The ratio of red blocks to blue blocks is 2:4 (simplified to $1: 2$)

Both parts are known
A prize of $£ 400$ is shared in a ratio of $2: 3$ between Callie and Lucas. How much do they get each?

One part is known

A prize is shared in a ratio of 3:4 between Lucy and Mark. If Lucy gets $£ 18$, how much should Mark get?

$£ 18$

using fractions

Mia has a bag of 45 marbles. $\frac{3}{5}$ are red and the rest are blue. How many are blue?

using simple formulae

$$
\begin{gathered}
3 x+4=22 \\
3 x=18 \\
x=6
\end{gathered}
$$

find pairs of numbers that satisfy an equation

$$
2 a+b=12
$$

$2 \times 1+10=12$
$2 \times 2+8=12$
$2 \times 3+6=12$
$2 \times 4+4=12$
$2 \times 5+2=12$

using algebra to show unknown measurements

A piece of string was 130 cm long but a section was cut off. The string is now 103 cm long. How much was cut off?

$$
\begin{gathered}
130-x=103 \\
130-\mathbf{2 7}=103
\end{gathered}
$$

describe linear number sequences

Find the difference between each term in the sequence. This is your ' n '

Work out how to get from your $4 n-1$
' n ' to the first term in the
sequence. In this case, -1 .
Check your rule

$$
\begin{aligned}
& 4 \times 1-1=3 \\
& 4 \times 2-1=7 \\
& 4 \times 3-1=11 \\
& 4 \times 4-1=15 \\
& 4 \times 4-1=19
\end{aligned}
$$

generate linear number sequences

$$
\text { Rule: } 3 n+2
$$

1) Multiply the ' n ' number by each term in the sequence
2) Add or subtract the number that comes after the ' n '

1st term: $3 \times 1+2=5$
2nd term: $3 \times 2+2=7$
20th term: $3 \times 20+2=62$
100 th term: $3 \times 100+2=302$

Y6- Measurement

metric units of measure

convert between miles and kilometres

25 mile $\approx 40 \mathrm{~km}$
$32 \mathrm{~km} \approx 20$ miles

area of triangles

(b $\times h$) $\div 2$

8 cm
area of parallelograms
(b $\times \mathrm{h}$)

$3 \times 5=15 \mathrm{~cm}^{2}$

$$
(8 \times 6) \div 2=24 \mathrm{~cm}^{2} \quad(3 \times 5) \div 2=7.5 \mathrm{~cm}^{2}
$$

volume of cuboids
width x length x height

area and perimeter of rectangles

Area $=$ length x width
Perimeter $=2 \mathrm{~L}+2 \mathrm{~W}$

Area $=5 \times 3=15 \mathrm{~cm}^{2}$
Perimeter $=(5 \times 2)+(3 \times 2)=16 \mathrm{~cm}^{2}$

convert units of time

60 seconds= 1 minute
60 minutes $=1$ hour 24 hours = 1 day 7 days $=1$ week 12 months = 1 year 365 days $=1$ year

Y6- Geometry (Properties of Shape)

angles in polygons

The sum of the angles in a polygon is equal to the number of sides, subtract two then multiplied by 180°

$$
\text { triangle: } 180^{\circ}
$$

quadrilateral: 360° pentagon: 540 triangle: 720°

angles in triangle

Angles in a triangle add

$$
\text { up to } 180^{\circ}
$$

$$
\begin{gathered}
95^{\circ}+50^{\circ}+x=180^{\circ} \\
145^{\circ}+x=180^{\circ} \\
x=35^{\circ}
\end{gathered}
$$

| Angles in a right
 angle add up to
 90° | Angles in a
 straight line add
 up to 180° |
| :--- | :--- | | Angles around a |
| :--- |
| point add up to |
| 360° |

The radius of a circle is half the diameter

3D shapes and their nets cuboid

cylinder
triangular

angles in a quadrilateral

Angles in a quadrilateral add up to 360°

$$
90^{\circ}+95^{\circ}+100^{\circ}+x=360^{\circ}
$$

$$
285^{\circ}+x=360^{\circ}
$$

$$
x=75^{\circ}
$$

corresponding angles are equal
opposite angles are equal
alternate angles are equal

opposite angles are equal

cube	cuboid	sphere
6 square faces	6 faces	1 curved surface
12 edges	12 edges	0 edges
8 vertices	8 vertices	0 vertices
tetrahedron	triangular	cylinder
4 triangular faces	prism	2 circular faces
6 edges	5 faces	1 curved surface
4 vertices	9 edges	2 curved edges
	6 vertices	0 vertices
cone	square-based	octahedron
1 circular face	pyramid	8 faces
1 curved surface	5 faces	12 edges
1 curved edge	8 edges	6 vertices
1 apex	5 vertices	

Y6- Statistics

pie graphs

Pie graphs are a way of showing data as a snapshot in time

Pie chart showing the favourite fruits in Year 5

■strawberries
ロapples
■blueberries

strawberries	12	$\frac{12}{30}=\frac{144}{360}=144^{\circ}$
apples	3	$\frac{3}{30}=\frac{36}{360}=36^{\circ}$
blueberries	7	$\frac{7}{30}=\frac{84}{360}=84^{\circ}$
bananas	8	$\frac{8}{30}=\frac{96}{360}=96^{\circ}$

line graphs
Line graphs show a change over time
graph title

calculating the mean

The mean is a way of finding the average of a set of data

To find the mean, first add the values together

$$
(4+6+3+2+5=20)
$$

Next divide the answer by the amount of values $(20 \div 5=4)$

The mean of this set of data is 4

