Y5- Number and Place Value

Y5- Addition and Subtraction
Column addition

	HTh	TTh	Th	H	T	O
	4	5	2	5	7	8
+		2	3	3	5	1
	4	7	5	9	2	9
				1		

column subtraction

	HTh	TTh	Th	H	T	0
	4	4	5	1	2	5
7	8					
-		2	3	3	5	1
	4	2	9	2	2	7

column addition

$352,196+204,500=556,696$

use rounding to check answers

416,493 people see a football match on Friday and 304,192 see a match on Saturday. How many people saw the match in total?
approximate answer: $420,000+300,000=720,000$
actual answer: $\quad 416,493+304,192=720,685$

solve addition and subtraction word problems

A factory makes 34,246 toys in January and 43,394 toys in February. It needs to make 120,000 toys in total in the first 3 months. How many does it need to make in March?

120,000		
34,246	43,394	$?$

$$
\begin{aligned}
& 34,246+43,394=77,640 \\
& 120,000-77,640=42,360
\end{aligned}
$$

Y5- Multiplication and Division

short multiplication

using known facts

$$
\begin{aligned}
3 \times 5 & =15 \\
30 \times 5 & =150 \\
300 \times 5 & =1,500 \\
3,000 \times 5 & =15,000 \\
0.3 \times 5 & =1.5 \\
0.03 \times 5 & =0.15
\end{aligned}
$$

multiplying by 10, 100 and 1000

πh	Th	H	T	O	t	h
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$
		1	2	4	5	
	1	2	4	5		
1	2	4	5	0		

dividing by 10, 100 and 1000

Th	Th	H	T	O	t	h
		$\mathbf{4}$	$\mathbf{2}$	$\mathbf{0}$		
			4	2		
				4	2	
				0	4	2

Common factors of 12 and 30 are $\mathbf{1 , 2} \mathbf{3}$ and 6.
The highest common factor (HCF) is 6

$\frac{12}{12}$	30
(1) $\times 12$	1×30
$(2) \times 6$	$(2) \times 15$
$(3) \times 4$	$(3) \times 10$
	5×6

A multiple is a number that can be divided by another without a remainder.

Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27 Multiples of 4: $4,8,12,16,20,24,28,32$

A prime number is a whole number greater than one that only has two factors- one and itself. It can't be divided by another positive integer without leaving a remainder. 2 is the only even prime number Non-prime numbers are called composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

square numbers
A square number is the product of multiplying a number by itself.

12	1×1	1	
22	2×2	4	-
			$2^{2}=4$
3^{2}	3×3	9	
4^{2}	4×4	16	
52	5×5	25	
62	6×6	36	$32=$
72	7×7	49	
8^{2}	8×8	64	
92	9×9	81	
10^{2}	10×10	100	
11^{2}	11×11	121	$4^{2}=16$
12^{2}	12×12	144	

cube numbers

A cube number is the product of multiplying a number by itself, then by itself again.

1^{3}	$1 \times 1 \times 1$	1	7
2^{3}	$2 \times 2 \times 2$	8	-
33	$3 \times 3 \times 3$	27	\square
43	$4 \times 4 \times 4$	64	$2^{3}=8$
5^{3}	$5 \times 5 \times 5$	125	
6^{3}	$6 \times 6 \times 6$	216	77
73	$7 \times 7 \times 7$	343	H
83	$8 \times 8 \times 8$	512	H1
93	$9 \times 9 \times 9$	729	\square
10^{3}	$10 \times 10 \times 10$	1000	$3^{3}=27$
11^{3}	$11 \times 11 \times 11$	1331	
12^{3}	$12 \times 12 \times 12$	1728	

distributivity

Distributivity can be expressed as $a(b+c)=a b+a c$
example:

$$
\begin{aligned}
& 3(2+4)=3 \times 2+3 \times 4 \\
& 3 \times 6=6+12
\end{aligned}
$$

equivalence statements

$$
4 \times 25=2 \times 2 \times 25
$$

$$
\begin{gathered}
3 \times 120=3 \times 2 \times 6 \times 10=6^{2} \times 10 \\
4 \times 30=4 \times 3 \times 10
\end{gathered}
$$

short division

$$
321 \div 4=80.25
$$

dividend divisor quotient

$$
\frac{321}{4}=80.25
$$

		0	8	0	0	5
	4	3	2	1	\bullet	0
	0					
		3		1	2	

decimal 80.25
fraction $80 \frac{1}{4}$
remainder 80 r 1
missing number problems

$$
\begin{gathered}
3 \times 120=360 \\
3 \times \square=360 \\
360 \div \square=120 \\
\square=120 \times 3 \\
\square=360 \div 3 \\
120=\square \div 3
\end{gathered}
$$

```
Y5- Fractions (including Decimals and Percentages)
```


comparing and ordering fractions

$\frac{3}{8}$
$\frac{3}{8}$
$<\frac{1}{2}$
$<\frac{3}{4}$
expressing fractions in the same denominator

mixed numbers and improper fractions

mixed number improper fraction

22
5

adding fractions with different

 denominatorsFirst express the fractions as the same denominator

$$
\frac{8}{12}+\frac{3}{12}=\frac{11}{12}
$$

subtracting fractions with different denominators

$$
\frac{8}{12}-\frac{3}{12}=\frac{5}{12}
$$

0	t	h	th	
3	0	7	2	
1				
0	5			
0	0	7		
0	0	0	2	

Round to the nearest whole number

Round to the nearest tenth

$$
3.429
$$

order and compare decimals

O	0 t	h	th
1	0	3	0
1	0	0	0
1	0	3	4

$$
1.34>1.3>1.003
$$

multiply fractions by whole numbers

$$
\frac{4}{5} \times 3=\frac{12}{5}=2 \frac{2}{5}
$$

multiply mixed numbers by whole numbers
00000000

$$
3 \frac{2}{5} \times 2=6 \frac{4}{5}
$$

method one:

$$
3 \times 2=6
$$

$\frac{2}{5} \times \frac{2}{1}=\frac{4}{5}$

1) Multiply the whole numbers
2) Multiply the fraction by the whole number

$$
6+\frac{4}{5}=6 \frac{4}{5}
$$

3) Add the two answers together
method two:

$$
\begin{aligned}
& \frac{17}{5} \times \frac{2}{1}=\frac{34}{5} \\
& \frac{34}{5}=6 \frac{4}{5}
\end{aligned}
$$

1) Convert the mixed number to an improper fraction
2) Multiply the improper fraction by the whole number
3) Convert the answer to a mixed number
read and write decimal numbers as fractions

$$
\frac{3}{4}=\frac{75}{100}=0.75 \quad 0.25=\frac{25}{100}=\frac{1}{4}
$$

$$
\frac{73}{100}=0.73
$$

fraction, decimal and percentage equivalences

$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{1}{5}$	0.2	20%
$\frac{2}{5}$	0.4	40%
$\frac{3}{5}$	0.6	60%
$\frac{4}{5}$	0.8	80%
$\frac{3}{10}$	0.3	30%
$\frac{7}{10}$	0.7	70%

decimal addition and subtraction

Line up number in the correct place value columns and include the decimal point. Use place holders to fill in the empty spaces.

$$
23.4-1.23=
$$

$$
4-1.09=
$$

T	O	t	h
2	3	$\oint^{3} \boldsymbol{y}$	${ }^{1} 0$
	1	2	3
2	2	1	7

T	O	t	h
	${ }^{3} \boldsymbol{y}$	$\boldsymbol{Q}^{1} \mathrm{Q}$	${ }^{1} 0$
	1	0	9
	2	9	1

Y5- Measurement

composite rectilinear shapes

If any sides are missing, calculate those first.

perimeter: add all the sides together.

$$
3+3+7+4+10+6=32 \mathrm{~cm}
$$

Area: split the shape into rectangles, calculate the area of each, then add together

$$
\begin{gathered}
3 \times 6=18 \quad 7 \times 4=28 \\
18+28=46 \mathrm{~cm}^{2}
\end{gathered}
$$

area of rectangles

$4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}^{2}$

2 cm

volume of cuboids
width x length x height

$6 \times 2 \times 3=36 \mathrm{~cm}^{3}$
convert units of time
60 seconds= 1 minute
60 minutes $=1$ hour
24 hours= 1 day
7 days $=1$ week
12 months = 1 year
365 days $=1$ year

measuring using a protractor

1) Estimate the angle. If it is an acute angle, it will be less than 90°

2) Line up the centre of the protractor with the centre of the angle.
3) Count around the protractor from one line to the other, starting from zero.

sides in a rectangle

 Use $2 a+2 b$ to find missing sides.a

$2 a+2 b=28 \mathrm{~cm}$
If $a=10 \mathrm{~cm}, \mathrm{~b}=4 \mathrm{~cm}$.

Angles in a straight line add up to 180°

Angles in a right angle add up to

Angles around a point add up to 360°

regular and irregular polygons

angles

acute angle less than 90°

obtuse angle
more than 90° less than 180°

right angle exactly 90°

acute angle more than 180° less than 360°

In a regular polygon, all angles and sides are the same size.

In an irregular polygon, the angles and sides are not all the same size

cube	cuboid	sphere
6 square faces	6 faces	1 curved surface
12 edges	12 edges	0 edges
8 vertices	8 vertices	0 vertices
tetrahedron	triangular	cylinder
4 triangular	prism	2 circular faces
faces	5 faces	1 curved surface
6 edges	9 edges	2 curved edges
4 vertices	6 vertices	0 vertices
cone	square-based	octahedron
1 circular face	pyramid	8 faces
1 curved surface	5 faces	12 edges
1 curved edge	8 edges	6 vertices
1 apex	5 vertices	

Y5- Geometry- Position and Direction

reflection

When a shape is translated or reflected, it does not change.

table				
hockey	tennis	football	rugby	total
21	41	16	22	100

If one part is missing, add the

hockey	tennis	football	rugby	total
21	41		22	100

If the total is missing, add the

hockey	tennis	football	rugby	total
21	41	16	22	

two- way table

line graphs
Line graphs show a change over time

timetables

Here is part of a bus timetable from Kingston to Clevemont

Kingston	$10: 01$	$10: 24$	$11: 01$	$11: 24$		
Marchdean	$10: 23$	-	$11: 23$	-		
East Bridgate	$10: 35$	$10: 55$	$11: 35$	$11: 55$		
Clevemont	$11: 06$	$11: 15$	$12: 06$	$12: 15$	\quad	The time
:---						
the bus						
leave						
Kingston						

This shows that it didn't stop at Marchdean

This bus takes 1 hour and 5 minutes (65 minutes) to go from Kingston to Clevemont

